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Letters
Highly enantioselective alkylation of glycine methyl and ethyl
ester derivatives under phase-transfer conditions:

its synthetic advantage
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Abstract—Phase-transfer alkylation of the benzophenone Schiff base of glycine methyl or ethyl ester (2) was found to be catalyzed
by 3,4,5-F3-C6H2-NAS-Br [(S,S)-1] with high efficiency and excellent enantioselectivity. This procedure allows facile derivatization
of the resulting alkylation products to other synthetically useful chiral building blocks.
� 2003 Elsevier Ltd. All rights reserved.
The phase-transfer catalytic asymmetric functionaliza-
tion of protected glycine derivatives has certainly gained
solid success through recent extensive studies on the
development of new catalysts and modification of the
reaction conditions, providing practical procedures for
the asymmetric synthesis of both natural and unnatural
a-amino acids.1 In almost all the reaction systems
reported to date, however, use of tert-butyl ester seems
essential primarily to avoid hydrolysis under the basic
conditions and, more importantly, to achieve sufficient
enantioselectivity;1;2 this leads to inevitable difficulty in
the substrate preparation and particularly in additional
functionalizations. During the course of our efforts on
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the molecular design of chiral C2-symmetric quaternary
ammonium salts and their applications,1f ;3 we fortu-
nately found that the distinct ability of 3,4,5-F3-C6H2-
NAS-Br [(S,S)-1]3b as a chiral phase-transfer catalyst
made it feasible to attain excellent enantioselectivity
with glycine methyl and ethyl ester derivatives, provid-
ing the first solution to this problem (Scheme 1).

Vigorous stirring of a mixture of 2a2;4, benzyl bromide
(1.2 equiv), and (S,S)-13b (1mol%) in toluene–50%
KOH aqueous solution (volume ratio¼ 3:1) at 0 �C for
3 h resulted in formation of the corresponding benzyl-
ation product 3a (R¼CH2Ph) in 82% yield and,
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Table 1. Catalytic asymmetric alkylation of 2 under phase-transfer conditions with (S,S)-1 as catalysta

Ph2C N
O

OAk Ph2C N
O

OAk
H R2a (Ak = Me), b (Ak = Et)

toluene-50% aq KOH
3a, b0 °C

(S,S)-1 (1 mol%)
RX (1.2 equiv)

Entry Substrate RX React time (h) % Yieldb % Eec (config)d

1 2a PhCH2Br 3 82 97 (R)

2 2a Br 3 72 94 (R)

3 2b PhCH2Br 2 96 98 (R)

4 2b Br 2 81 96 (R)

5e 2b Br 3 72 95 (R)

6 2b

Br

2 99 97 (R)

7 2b

Br

O

Ph 2 99 94 (R)

8f 2b EtI 3 75 93 (R)

aUnless otherwise specified, the reaction was carried out with 1.2 equiv of RX in the presence of 1mol% of (S,S)-1 in toluene–50% KOH aqueous

solution at 0 �C for the given reaction time.
b Isolated yield.
c Enantiopurity was determined by HPLC analysis of the alkylated imine using a chiral column [DAICEL Chiralcel OD (entries 1 and 3), OD-H

(entries 2 and 5–7), Chiralpak AD (entry 4), and AD-H (entry 8)] with hexane–2-propanol as solvent.
dAbsolute configuration was determined by comparison of the HPLC retention time with the authentic sample independently prepared.2a
eWith 2mol% of the catalyst.
f Use of 5 equiv of alkyl halide and satd CsOH as a basic phase at )15 �C.
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surprisingly, the enantioselectivity reached 97% ee (entry
1 in Table 1). A similar tendency was observed in the
allylation of 2a (entry 2).5 In addition, the benzylation
of glycine ethyl ester-derived 2b2;4 furnished 3b
(R¼CH2Ph) in 96% yield with 98% ee (entry 3).
Encouraged by these initial findings, we examined the
alkylation of 2b with other representative alkyl halides
and the results summarized in Table 1 clearly demon-
strate the general applicability of the present method.

The chiral phase-transfer catalysis of (S,S)-13b was also
found to be quite effective for the asymmetric quatern-
ization of the aldimine Schiff base of alanine methyl and
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ethyl esters (4a and 4b) as exemplified in Scheme 2.3a In
the benzylation of 4b, amino ester 5b (R¼CH2Ph) was
obtained with 98% ee (82% yield), which was superior to
that of 5a in the reaction with 4a, and high level of
enantioselectivity was also observed when other alkyl
halides such as a-naphthylmethyl bromide and trans-
cinnamyl bromide were employed.

The synthetic advantage of the amenability of glycine
methyl and ethyl ester derivatives is quite obvious and
highlighted by the well-established transformations as
illustrated in Scheme 3. Acidic hydrolysis of the imine
moiety of 3b [R¼CH2ða-NpÞ] and reprotection with
R = PhCH2
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(Boc)2O afforded 6 quantitatively, which was readily
transformed into the corresponding secondary amide 7
by simple treatment with excess methyl amine in meth-
anol and a-amino aldehyde 8 with DIBAH in toluene,6

respectively, without loss of enantiomeric excesses.
Similarly, optically active a,a-dialkyl-a-amino ester 5b
(R¼CH2Ph) can be converted to the corresponding
stereochemically stable a-amino aldehyde 9 in excellent
chemical yield.6;7

In summary, we have shown that the efficient chiral
phase-transfer catalysis of (S,S)-1 enables highly enan-
tioselective alkylation of methyl and ethyl esters of
N-protected a-amino acids under mild conditions,
greatly expanding the scope of this well-elaborated
asymmetric methodology. Facile conversion of the
resulting a-alkylated a-amino esters to the correspond-
ing optically active a-amino amides and aldehydes rep-
resents the usefulness of this method.
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